

CONCEPT

Existing weather conditions, such as atmosphere, stability, wind, air temperature, and relative humidity, all contribute to fire behavior.

OBJECTIVE

Students will be able to:

-identify the effects of wind on fuel moisture levels

-identify current air temperature, relative humidity and cloud types

-explain the difference between stable vs. unstable air -describe the conditions for fire risk

METHOD

Have students work in groups to read through their handout, conduct the lab, and answer the questions on their investigation worksheets.

Fire Behavior & Weather

Procedure

- 1. Ask students to read the *Fire Behavior & Weather* handout.
- 2. Discuss the weather conditions that contribute to fire behavior.

Dry Air/Transpiration Lab

This lab is designed to demonstrate how dry, Santa Ana winds and a drop in relative humidity are significant contributors to decreasing plant fuel moisture levels. Transpiration will be measured using a *potometer* (*pot*=to drink, *meter*=measure).

1. Discuss transpiration with the students, explaining that it is the evaporation of water through the stomates of a plant leaf.

You may want to have the following procedures done ahead of time and set up as a demonstration for the students.

- Place the tip of a 0.1 ml pipette into a 16" piece of clear plastic tubing.
- Submerge the tubing and pipette in a shallow tray of water. Draw water through the tubing until all air bubbles are eliminated.
- Carefully cut the plant stem UNDER WATER.
- While the plant is submerged, insert the freshly cut stem into the open end of the tubing.
- Bend the tubing upward into a "U" and use the clamp on a ring stand to hold both pipette and tubing.
- Use petroleum jelly to make an airtight seal surrounding the stem AFTER it has been inserted into the tube. Make sure the end of the stem is immersed in water.
- Let the potometer apparatus equilibrate for 10 minutes before beginning the demonstration.
- 2. Measure relative humidity as close to the plant as possible.
- 3. Record the results on *7a–Student Investigation Worksheet*.
- 4. Expose the plant to the wind of a fan, at least 1 meter from the plant on low speed.
- 5. Read and record the level of water in the pipette at the beginning (time zero).
- 6. Continue to record the water level in the pipette every 3 minutes for 30 minutes. (You may wish to assign this to a student, while performing the next Lab.)

cont.

Fire Behavior & Weather

- **MATERIALS**
- -Student Handout
- -Student Investigation Worksheets
- -0.1 ml pipette
- -Ring stand
- -Clamps
- -Clear plastic tubing
- -Petroleum jelly
- -Electric fan
- -plant cutting (as freshly cut as possible): about 1' long, diameter should fit tightly inside the tubing -See GLOBE protocols for the Atmosphere Investigation

DURATION

2 – 3 class sessions

- 7. At the end of 30 minutes, retake the relative humidity.
- 8. Have students record the data on *7a—Student Investigation Worksheet* and complete the questions.
- 9. Have students present their answers.
- 10. Discuss the answers with the students.

GLOBE Atmosphere Investigation

- 1. Divide the class into small groups and hand out materials to follow GLOBE protocols under the *GLOBE Atmosphere Investigation* including cloud type, rainfall, current temperature, and relative humidity.
- 2. Have students complete all the questions on the *7a–Student Investigation Worksheet.*
- 3. Have students present their answers.
- 4. Discuss the answers with the students.

Video Connections

- Fire Weather, Part 1
- GLOBE Atmosphere

Extensions

Visit www.Globe.gov/ for additional related activities under the GLOBE Teacher's Guide.

Key Words

Atmospheric Climate Cumulus

Dust Devil Protocol Relative Humidity

Stratus Water Vapor Weather